Joan Abella i Creus
Joan Viñals i Olià
En los últimos años hemos realizado un estudio sobre la paragénesis y las asociaciones minerales en la “Mina Eureka”, La Torre de Cabdella, Lleida, España y en estas líneas pretendemos describir algunas de las nuevas especies minerales halladas en este yacimiento, muchas de ellas nunca citadas en nuestro país.
ANDERSONITA Na2Ca(UO2)(CO3)3·6H2O
.
Esta rara especie mineral es la primera vez que ha sido descrita en nuestro país y es el mineral de neoformación más abundante del yacimiento. La Andersonita es uno de los minerales de nueva formación originados por exudación en la pared de las galerías que hemos identificado en este yacimiento, que debe su origen, al menos en parte, a actividades humanas, en este caso a la minería, admitido como especie mineral por el IMA, que se ha desarrollado por precipitación rápida dentro de un intervalo de tiempo geológico extremadamente corto (unos 40 años). El agua meteórica ha ido percolando en la arenisca meteorizando la Uraninita, y probablemente también los feldespatos, lo que ha propiciado un enriquecimiento en uranio y sodio. Los diversos carbonatos que contienen calcio (Calcita y Ankerita, fundamentalmente) habrían estado los responsables de la aportación de este elemento químico, a la vez que habrían actuado de tampón, hasta exudar en las paredes y el techo de las galerías de investigación, al darse las condiciones físicas necesarias para su nucleación, iniciando el crecimiento de los cristales. Podemos afirmar que el mineral se mantiene estable en un rango de temperatura de entre los 13 y los 16 ºC, y una humedad relativa de entre el 58 y el 80%, y que puede cristalizar alejado del óxido de uranio. El estudio de este mineral pone de manifiesto la presencia de tres generaciones de cristales. Una primera generación está representada por cristales idiomorfos de mayores dimensiones que el resto y muestra un color muy particular, un verde azulado intenso, que nos recuerda las fluoritas verdes de la mina "Rogerley" de Frosterley, en Durham, Inglaterra. Una segunda generación es la formada por agregados heterogéneos criptocristalinos muy densos y de aspecto globular. Esta compacidad nos permite observar una propiedad física de este mineral que nos ayudará en su reconocimiento: su plasticidad. El color es verde pistacho, ligeramente amarillento y de brillo céreo; su fluorescencia es más intensa que el resto. La tercera generación es la más abundante y la que nos permite disfrutar de cristales idiomorfos de excelente calidad. Los cristales se suelen presentar agrupados en agregados en drusa y son ricos en formas y hábitos, lo que sugiere que se formaron a partir de una solución muy saturada. Los cristales aislados que ha dado esta tercera generación son extraordinarios y también se pueden encontrar crecimientos paralelos. El color es verde pálido, con brillo subadamantino; presentan una intensa fluorescencia de color verde brillante al ser expuesta a la radiación ultravioleta de onda larga y ligeramente más intensa al ser expuesta a la radiación ultravioleta de onda corta. Esta propiedad nos permite disfrutar de un espectáculo único en nuestro país: si entramos en las galerías de investigación de este yacimiento acompañados de una linterna equipada con lámpara de luz ultravioleta e iluminamos las coladas que este mineral ha formado principalmente en las paredes, se pueden observar unas espectaculares franjas serpenteantes de intensa luminiscencia verde.
Colada ondulante de Andersonita en el interior de la galería principal, la fotografía inferior muestra su espectacular fluorescencia. Fotos Joan Abella i Creus.
.
Los cristales de esta especie, son los más ricos en formas y hábitos del yacimiento y, por lo tanto, muy ricos en caras. Nosotros no pretendemos describirlos sistemáticamente todos ellos, sino describir las principales combinaciones a partir de los hábitos estudiados. Así pues, podemos encontrarnos cristales de hábito seudocúbico que son el resultado de la combinación de las siguientes formas cristalinas; el romboedro negativo {01 ī 1} bastante equidimensional, truncado en uno de los vértices por el pinacoide {0001}, también de hábito tabular, que son el resultado de la combinación de las siguientes formara cristalinas; el romboedro obtuso positivo {10 ī 1} truncado en uno de los vértices por el romboedro negativo {01 ī 1}, o el formado por la combinación del romboedro negativo {01 ī 1} y el romboedro positivo {10 ī 1} truncado por los pinacoides {0001} muy desarrollados y de contorno hexagonal en detrimento de las caras de la combinación de romboedros.
.
Andersonita. Foto SEM Joan Viñals i Olià.
.
Un tercer hábito es el seudooctaédrico que es el resultado de la combinación de las siguientes formara cristalinas; el formato por la combinación del romboedro negativo {01 ī 1} y el romboedro positivo {10 ī 1} en combinación ilimitada, también el formato por la combinación el romboedro negativo {01 ī 1} y el romboedro positivo {10 ī 1} truncados por los pinacoides {0001}, finalmente podemos encontrarnos cristales de hábito prismático que son los más complejos dado que intervienen diversas formas, suelen ser el resultado de la combinación de las siguientes formara cristalinas; el prisma de primera especie {10 ī0}, en combinación con el prisma de segunda especie {1120}, de esta última forma se suelen identificar dos caras, la parte superior del prisma está formada por la combinación del romboedro negativo {01 ī 1} y el romboedro positivo {10 ī 1} y el pinacoide {0001}. Los cristales individuales no suelen superar los 0,5 mm.En algún tramo de las galerías hemos encontrado cristales de Andersonita de color más amarillo que el resto y de un brillo céreo. Observados bajo la lupa vimos que las aristas estaban redondeadas y que las caras presentaban figuras de corrosión química: habían sufrido un proceso de disolución parcial, lo cual nos demuestra que las condiciones en el interior de las galerías han variado a lo largo de los últimos cuarenta años. Finalmente, decir que este mineral es soluble en agua y que ha sido encontrado asociado con Čejkaita y Eritrita. Ésta última, por cierto, en una variedad bastante rica en níquel.
ARSENURANYLITA Ca(UO2)4(AsO4)2(OH)4·6H2O
Ésta es una especie muy rara, citada tanto solo en media docena de yacimientos en todo el mundo, y es la primera vez que ha sido encontrada en nuestro país.Este mineral se encuentra muy localizado en la zona de oxidación de los afloramientos de Uraninita del yacimiento, rellenando pequeñas fisuras de longitud centimétrica y de anchura milimétrica dentro de la arenisca. Estas venas pueden encontrarse a algunos centímetros de los minerales de primera generación.Su aspecto a ojo desnudo es el de una costra, pero observado a través del microscopio electrónico se evidencia que se trata de un denso agregado de cristales, sin una disposición determinada. Algunos de estos cristales los encontramos a veces aislados del resto e incluso hay de acabados en ambos extremos, lo cual nos ha permitido su estudio. Son cristales simples de hábito tabular {010} y alargados según [100] de aquí se debe su hábito pseudoprismático. Los cristales son el resultado de la combinación de las siguientes formas cristalinas; el prisma de tercera especie {110}, el pinacoide lateral {010} y el pinacoide basal {001}. El tamaño de los cristales no supera los 0,08 mm, por lo que resulta difícilmente identificable incluso a 100 aumentos.El color es amarillo limón y raramente algún ejemplar muestra una ligera tonalidad anaranjada; los cristales son traslúcidos y de brillo vítreo. Presenta fluorescencia débil de color amarillo anaranjado al ser expuesto a la radiación ultravioleta de onda larga y ligeramente menor a la de onda corta. La fluorescencia en algunos ejemplares es más verdosa debido a la paragénesis con Uranofana-alfa. La paragénesis de la Arsenuranylita la forman la Uranofana-alfa y la Heinrichita, encontrándose también ocasionalmente asociada a la Zeunerita.
.
Arsenuranylita. Medida del ejemplar 42x40mm. Foto y colección Joan Abella i Creus.
BAYLEYITA Mg2(UO2)(CO3)3)(H2O)12·6H2O
Es un mineral raro, hallado en nuestro país por primera vez. Forma parte de los minerales de neoformación descubiertos en este yacimiento. Aparece siempre en cristales idiomorfos de hábito prismático a acicular, pocas veces acabados por los dos extremos, a menudo tienden a formar agregados radiados, y no suelen superar 1 mm. El color es amarillo, ligeramente verdoso, blanco si está deshidratado, con brillo vítreo y transparente; presenta una fluorescencia débil a moderada de color verde al ser expuesta a la radiación ultravioleta de onda larga y moderada de color verde amarillento en la onda corta.Ha sido encontrado asociado a la Liebigita.
.
Bayleyita. Medida del agregado 2mm. Foto i colección Joan Abella i Creus.
BILLIETITA Ba(UO2)6O4(OH)6·8H2O
.
Billietita. Medida de la macla 0,37mm. Foto y colecció Joan Abella i Creus.
COMPREIGNACITA K2(UO2)6O4(OH)6·7H2O
.
Compreignacita. Medidas del ejemplar 115x63mm. Foto y colección Joan Abella i Creus.
.
CUPROSKLODOWSKITA Cu(UO2)2Si2O7·6H2O
.
Cuprosklodowskita. Medida del ejemplar 60x39mm. Foto y colección Joan Abella i Creus.
.
Esta especie suele formarse muy cerca de los minerales de primera generación.Los mejores ejemplares se presentan en agregados de cristales submilimétricos raramente superiores a 0,2 mm, de hábito capilar y dispuestos en haces de manera radiada, dando como resultado una forma estrellada de gran belleza. El color de las venas es verde hierba, pero si observamos los cristales individualmente, tienen un color verde más claro y son transparentes. El brillo de los cristales es subvítreo y la de las venas es sedosa. No presenta fluorescencia ni en onda corta ni en onda larga.La paragénesis de la Cuprosklodowskita la forman la Uranofana-alfa, la Billietita y la Vandendriesscheita. La encontramos asociada a la Uraninita y la Brochantita, que en ocasiones cristaliza sobre sus cristales, los cuales quedan incluidos en la Brochantita e incluso sobresalen.
.
.
Cuprosklodowskita. Medida del agregado 0,7mm. Foto y colección Joan Abella i Creus.
FRANCEVILLITA Ba(UO2)2V2O8·5H2O
.
Francevillita. Medida del ejemplar 37x24mm. Foto y colección Joan Abella i Creus.
HEINRICHITA Ba(UO2)2(AsO4)2·10-12H2O
.
Es una especie mineral de las consideradas raras y es la primera vez que ha sido citada en nuestro país. En la mina "Eureka" es un mineral escaso.Aparece en la zona de oxidación de los afloramientos de Uraninita, donde se puede localizar separado algunos centímetros de los minerales de primera generación. Lo podemos encontrar rellenando los espacios vacios del esqueleto de los arenisca, actuando como cemento de muchos granos de cuarzo constituyentes de la misma roca, o también rellenando pequeñas fisuras en la misma roca, que suelen seguir la estratificación natural de éstas, y que tienen una anchura entre 0,15 y 0,25 mm. Si el espacio disponible está en el rango de 0,15 en 0,20mm es habitual encontrar la Heinrichita formando densos agregados de cristales anédricos a subédricos, si el rango es superior a 0,20mm entonces la podemos encontrar formando bonitos cristales idiomorfos.
.
Heinrichita. Foto SEM Joan Viñals i Olià.
La Heinrichita, cuando el espacio lo permite, la encontramos en agregados radiales en rosetas de cristales idiomorfos de hábito lamelar, más raramente en cristales idiomorfos aislados (que ocasionalmente muestran todas sus caras), y de contorno seudorómbico agudo, éstos han cristalizado encima de los granos de cuarzo de la arenisca, de la Zeunerita y del Eritrita. Suelen ser frecuentes las agrupaciones paralelas de varios cristales. Los cristales pueden alcanzar unos 0,45 mm. Hemos identificado tres formara de cristales, a pesar de que sólo hemos podido observar una sola cara; a) cristal de hábito lamelar, observamos sólo la forma del pinacoide basal {001}, muy desarrollado y de contorno seudorómbico agudo, debido al alargamiento en sentido del eje horizontal b, se intuye la existencia del prisma de segunda especie {110}. El hábito tan aplanado no permite discernir todas las formara de los cristales y fue el motivo que nos hizo dudar del resultado de los análisis pues los cristales parecían pertenecer al sistema monoclínico, de hecho con este mismo problema ya se encontraron los Srs. Eugene B. Gross, Alice S. Corey, Richard S. Mitchell y Kurt Walenta, al describir por primera vez esta especie a partir de los ejemplares procedentes de Black Forest en Alemania el año 1958, todo un consuelo!, b) cristal de hábito lamelar, observamos sólo la forma del pinacoide basal {001}, muy desarrollado en el sentido del eje horizontal a, de contorno rectangular ligeramente truncado en los vértices por el prisma tetragonal de segunda especie {110}, se intuye el predominio del prisma de primera especie {100}, c) cristal de hábito lamelar, observamos sólo la forma del pinacoide basal {001}, muy desarrollado en el sentido del eje horizontal a, de contorno hexagonal debido a la combinación del prisma tetragonal de segunda especie {110}, y el prisma tetragonal de primera especie {100}. El color es de un amarillo verdoso pálido a verde pálido. El brillo, en los cristales idiomorfos o en los agregados en rosetas es vítrea y son ligeramente transparentes, mientras que en los agregados densos de cristales anédricos y subédricos es nacarada y muy débilmente traslúcidos, presenta fluorescencia muy intensa de color verde brillante tanto en ser expuesta a la radiación ultravioleta de onda corta como de onda larga, probablemente, esta propiedad puede confundir la Heinrichita con la Autunita. La encontramos asociada en paragénesis a la Eritrita, por cierto una variedad bastante rica en níquel, también a la Zeunerita, a la Tyuyamunita y la Trögerita.
.
LIEBIGITA Ca2 (UO2)(CO3)3·11H2O
.
La Liebigite es un mineral poco frecuente y es la primera vez que ha sido encontrado en nuestro país. Forma parte de los minerales de neoformación descubiertos en este yacimiento.Lo encontramos en cristales subédricos de hábito prismático corto, formando agregados globulares y crecimientos paralelos. Resulta muy difícil identificar las formas cristalinas de este mineral, a menudo las aristas están redondeadas y las caras presentan figuras de corrosión química. El color es amarillo limón, ligeramente verdoso, con brillo vítreo de tipo resinoso y traslúcido; presenta una intensa fluorescencia de color verde amarillento con matiz azulado tanto al ser expuesta a la radiación ultravioleta de onda larga como de onda corta. Ha sido encontrado asociado a la Natrouranospinita y a la Bayleyita. Es muy parecido a la Andersonita, el color de ésta es más verdoso y su fluorescencia es más brillante y de tonalidad claramente azulada.
Liebigita. Medidas del ejemplar 37x22mm. Foto y colección Joan Abella i Creus.
.
NATROURANOSPINITA (Na2,Ca)(UO2)2(AsO4)2·5H2O
.
Forma parte de los minerales de neoformación investigados en este yacimiento, originados por exudación en las galerías de la mina. Pero a diferencia de los otros minerales de neoformación, lo podemos encontrar cristalizado en el interior de las microfisuras paralelas al techo de las galerías, y a cierta distancia (algunos centímetros) de éstas. Estas fisuras probablemente serían producidas por la expansión provocada por los explosivos utilizados en su abertura. También la podemos encontrar formando parte de la aureola de reacción química (junto con la Natrozippeita), en disposición más o menos concéntrica en torno a los pequeños núcleos lenticulares de Uraninita que fueron cortados durante la abertura de las galerías.Aparece tapizando superficies relativamente grandes (hasta 20x10 cm) en las mencionadas microfisuras, normalmente formando agregados en rosetas de cristales de hábito lamelar. Estos agregados unitariamente considerados suelen ser de la orden de 0,3mm. También hay cristales aislados idiomorfos y algunos acabados por ambos extremos. Se trata de cristales de hábito lamelar muy aplanados según {001}. Pueden alcanzar los 0,12mm, aunque normalmente son del orden de los 0,06mm.
.
Notrouranospinita. Foto SEM Joan Viñals i Olià.
.
Este hábito tan aplanado no permite discernir todas las formara de los cristales, observamos sólo la forma del pinacoide basal {001}, muy desarrollado y de contorno cuadrangular equidimensional a rectangular debido al alargamiento en sentido de uno de los ejes horizontales. Los cristales aislados suelen ser incoloros y transparentes y tener un intenso brillo vítreo de tipo nacarado. Las rosetas son de color amarillo verdoso muy pálido y también presentan brillo vítreo de tipo nacarado.En algunos ejemplares podemos distinguir dos generaciones de cristales: los de la primera generación tienen un aspecto más o menos esferoidal a causa de un proceso de disolución parcial y son mates, mientras que la segunda generación corresponde a los cristales idiomorfos, y estén aislados o bien agrupados en rosetas. Tiene fluorescencia intensa y brillante de color amarillo verdoso, más notable en onda corta que en la onda larga. Los agregados de Natrouranospinita que acompañan a la Natrozippeita tienen un color beige amarillento muy pálido y no presentan ninguna fluorescencia. Podemos constatar que se mantiene estable a una temperatura de unos 16 ºC y a una humedad relativa entre el 58 y el 62%. Probablemente sean éstas constantes, o muy parecidas, las que permitieron que cristalizara, en ausencia de agua de percolación (ver la descripción de la Čejkaita en este blog). La paragénesis de la Natrouranospinita está limitada a la Natrozippeita, y la encontramos asociada a Uraninita, Eritrita, Liebigita y Andersonita.
.
Natrouranospinita. Medidas del ejemplar 75x61mm. Foto y colección Joan Abella i Creus.
NATROZIPPEITA Na5(H2O)12[(UO2)8(SO4)4O5(OH)3]
.
La Natrozippeita es un mineral de los considerados como raro, es la primera vez que ha sido descrita en nuestro país, y es una especie poco frecuente de encontrar en el yacimiento. Vale decir que determinar el sodio en una especie mineral era en el pasado una tarea siempre compleja y de resultados no siempre fiables. Es probable que la Natrozippeita haya sido encontrada en otras localidades del país y clasificada erróneamente como Zippeita. Este mineral, se originó por exudación en la pared y techo de las galerías y se ha desarrollado por precipitación rápida en muy poco tiempo (unos 40 años). Aparece en contacto directo a pequeños núcleos lenticulares de Uraninita que fueron cortados durante la abertura de las galerías de la mina y también cristalizado a poca distancia de los mismos núcleos. En las primeras podemos observar claramente el resultado del proceso de exudación. Rodeando, en disposición más o menos concéntrica, a la Natrozippeita podemos ver una aureola de Natrouranospinita y más alejado Eritrita en agregados radiados de cristales en hábito capilar. Vista la tendencia que tiene el cobalto a migrar, lo que nos permite considerar que la solución mineralizadora depositada en el techo de la galería a medida que fue evaporándose permitió la cristalización fraccionada de sus compuestos, en primer lugar el Eritrita, después la Natrouranospinita y finalmente la Natrozippeïta, en magníficos cristales. Ésta última, cuando cristaliza más alejada de la Uraninita, no forma paragénesis con la Eritrita, sino que se encuentra asociada en la Natrouranospinita y a los sulfatos básicos de cobre: la Langita y la probable Ramsbeckita. Estas dos últimas especies formadas posteriormente a la Natrozippeita por meteorización de los minerales Bornita y Arsenopirita que se encuentran en un filón polimetálico interceptado también durante los trabajos de investigación. Este mineral aparece siempre cristalizado, en hábito lamelar y capilar, los cristales no suelen superar los 0,2mm, aunque hemos observado algún cristal de hábito capilar que llega hasta los 0,4mm. Los cristales idiomorfos que muestran todas sus caras son extremadamente raros y de tamaños muy reducidos. Los cristales forman agregados paralelos muy densos en forma de sección de lente biconvexa aguda, muy parecida a un romboedro agudo. A la vez estos agregados forman una segunda generación de agregados radiados a partir de un centro del que resultan magníficas formas en estrella bidimensionales. En las últimas fases de cristalización los cristales se desarrollaron en hábito capilar y se dispusieron formando agregados en haces de manera radiada, del que resultaron formas en estrella tridimensionales de gran belleza.
.
.
Natrozippeita. Medida del agregado 0,30mm. Foto y colección Joan Abella i Creus.
.
Dado que el hábito que muestran los cristales es extremadamente lamelar sólo nos ha sido posible identificar la cara principal de algunos cristales, representados en el esquema 1.
Teniendo en consideración que esta especie todavía no se sabe en qué clase de simetría cristalina pertenece creemos que las formas observadas pueden ser el resultado de la combinación del pinacoide {001} truncado por el pinacoide {100}. Dado que esta especie tuvo un crecimiento rápido, pensamos que el hábito de algunos cristales es seudohemimórfico, una de las caras habría desaparecido durante el crecimiento del cristal. El mineral es de color amarillo azufre y de brillo vítreo, aunque, a veces, adquiere una tonalidad verdosa debido a encontrarse cristalizado sobre una matriz oscura. Es transparente, aunque debido a la tendencia de formar densos agregados paralelos casi siempre la percepción es que el mineral es traslúcido. Presenta fluorescencia de color amarillo, intensa en onda larga y moderada en onda corta.
.
Natrozippeita. Foto SEM Joan Viñals i Olià.
TRÖGERITA (H3O)[(UO2)(AsO4)](H2O)3
.
Trögerita. Medidas del agregado 1mm. Foto y colección Joan Abella i Creus.
Suelen aparecen agrupados en drusa y en crecimientos paralelos (tanto paralelo al eje c como a los ejes a y b) presentan la siguiente composición; a) un pinacoide basal {001} muy desarrollado y de contorno seudorómbico agudo, y la pirámide tetragonal muy poco desarrollada. De hecho el hábito tan aplanado según {001} casi no nos permite discernir esta forma si no es con la ayuda de muchos aumentos. A veces los dos extremos más agudos de la cara del pinacoide están ligeramente truncados por el prisma tetragonal, b) un pinacoide basal {001}, muy desarrollado y de contorno cuadrangular y/o rectangular ligeramente truncado en uno los vértice por el prisma tetragonal, se trata de una forma muy característica de esta especie, c) un pinacoide basal {001}, muy desarrollado y de contorno hexagonal u octogonal debido a la combinación del prisma tetragonal de segunda especie {110}, y el prisma tetragonal de primera especie {100}. Generalmente, los cristales son transparentes. Los agregados holoaxiales, que tienen los ejes a y b paralelos, son traslúcidos debido al aumento del grueso por apilamiento de cristales. El color es amarillo verdoso muy pálido, intenso brillo vítreo a veces de tipo nacarado. Algunos ejemplares, no todos, presentan una débil fluorescencia de color verde pálido tanto en onda larga como en onda corta.
.
Trögerita. Foto SEM Joan Viñals i Olià.
URANOFANA-ALFA Ca(UO2)2[SiO3(OH)]2·5H2O
.
Es una especie mineral de las consideradas pocas frecuentes, aunque en el yacimiento estudiado es junto con la Tyuyamunita y la Carnotita el mineral secundario más abundante. Es la primera vez que ha sido encontrada en el yacimiento. Este mineral se encuentra localizado en la zona de oxidación de los afloramientos de Uraninita, formando parte de la aureola de reacción química dispuesta más o menos concéntricamente en torno a la Uraninita, junto con la Billietita y la Cuprosklodowskita. Se encuentra también llenando estrechas fisuras de longitud centimétrica a decimétrica y de anchura submilimétrica a milimétrica, en la arenisca. Estas venas pueden encontrarse a algunos centímetros de los minerales de primera generación. Su aspecto a ojo desnudo es el de una costra, pero si lo observamos con muchos aumentos se evidencia que se trata de un denso agregado botrioidal de cristales submilimétricos de hábito capilar en disposición radial.
.
Uranofana-alfa. Medidas del ejemplar 105x57mm. Foto y colección Joan Abella i Creus.
.
Los mejores ejemplares se presentan en agregados de cristales submilimétricos, siempre inferors en 0,09mm, de hábito capilar y dispuestos en haces de una manera radiada, de lo que resulta una forma estrellada de gran belleza.
El color es amarillo pálido a amarillo limón, traslúcido y de resplandor subvítreo en los agregados estelares a sedosa en el agregados botrioidales. La textura al ser rayado es plástica. Presenta fluorescencia moderada de color verde pálido al estar expuesta tanto a la radiación ultravioleta de onda corta como de onda larga. La paragénesis de la Uranofana-alfa la forman la Cuprosklodowskita con la que parece formar una serie continúa, la Billietita, el Arsenuranylita y la Vandendriesscheita. Se encuentra asociada a la Uraninita, a la Zeunerita, a la Malaquita y a la Brochantita.
El color es amarillo pálido a amarillo limón, traslúcido y de resplandor subvítreo en los agregados estelares a sedosa en el agregados botrioidales. La textura al ser rayado es plástica. Presenta fluorescencia moderada de color verde pálido al estar expuesta tanto a la radiación ultravioleta de onda corta como de onda larga. La paragénesis de la Uranofana-alfa la forman la Cuprosklodowskita con la que parece formar una serie continúa, la Billietita, el Arsenuranylita y la Vandendriesscheita. Se encuentra asociada a la Uraninita, a la Zeunerita, a la Malaquita y a la Brochantita.
Uranofana-alfa. Foto SEM Joan Viñals i Olià.
VANDERDRIESSCHEITA Pb1.5(UO2)10O6(OH)11·11H2O
.
.
Vandendriesscheita. Medida del agregado 0,4mm. Foto y colección Joan Abella i Creus.
.
El color es anaranjado, en ocasiones anaranjado ambarino o anaranjado rojizo, su polvo es color amarillo paja, es opaco y presenta brillo vítreo. No presenta fluorescencia al ser expuesta a la radiación ultravioleta ni de onda corta ni de onda larga. La paragénesis de la Vandendriesscheita la forma la Billietita, y la encontramos asociada a Uranofana-alfa, Cuprosklodowskita, Malaquita y Uraninita.
Referencias
2) Mata i Perelló, Josep M. (1990). Els minerals de Catalunya. Institut d’Estudis Catalans. Barcelona.
3) Costa, F. et al. (2000). Las areniscas de la Mina Eureka (Cu-U-V) (Pirineo Central): Texturas observadas versus reacciones planteadas. Cadernos Lab. Xeolóxico de Laxe. Vol. 25: 309-311. Coruña.
4) Rodà, Salvador (2002). La mina Eureka de la Vall Fosca (Pallars Jussà). Butlletí de l’Institut d’Estudis de la Natura. Vol. V, 3; 239-256. Santa Coloma de Gramenet.
5) Yael Díaz et al., dirigidos por Joan Carles Melgarejo. Inédito. Estudi Mineralògic de la Mina d’Urani Eureka, Pirineus Catalans. Universitat de Barcelona.
6) Bareche, Eugeni. (2005). Els minerals de Catalunya segle XX . Grup Mineralògic Català. Barcelona.
7) Abella Creus, Joan i Viñals Olià, Joan (2009). Čejkaita, Arsenuranylita, Compreignacita, Natrozippeita i d’altres minerals rars d’urani en el jaciment "Mina Eureka", Castell-estaó, La Torre de Cabdella, Lleida. Mineralogistes de Catalunya. 2009 Vol. X nº 2; 52-71. Barcelona.
Abella Creus, Joan y Viñals Olià, Joan (2009). Čejkaita, Arsenuranylita, Compreignacita, Natrozippeita y otros minerales raros de uranio en la mina “Eureka", La Torre de Cabdella, Pallars Jussà, Lleida. Revista de Minerales. 2009 Vol. IV nº 2; 52-71. Barcelona.
Publicado también en inglés en la revista “Mineral Up” 2/2009.
8) Bareche, Eugeni i Cesar Menor (2009). La mina “Eureka” a la Vall Fosca, Pallars Jussà, Lleida. Mineralogistes de Catalunya. 2009 Vol. X nº 2; 10-15. Barcelona.
Bareche, Eugeni y Cesar Menor (2009). La mina “Eureka” en la Vall Fosca, Pallars Jussà, Lleida. Revista de Minerales. 2009 Vol. IV nº 2; 10-15. Barcelona.
Publicado también en inglés en la revista “Mineral Up” 2/2009.
Relación de especies citadas en la “Mina Eureka”:
ANDERSONITA Na2Ca(UO2)(CO3)3·6H2O (7)
ANKERITA Ca(Fe2+,Mg,Mn)(CO3)2 (2)
ANTLERITA Cu2+3(SO4)(OH)4 (5)
PLATA Ag (7)
ARSENOPIRITA FeAsS (7)
ARSENURANYLITA Ca(UO2)4(AsO4)2(OH)4·6H2O (7)
AZURITA Cu2+3(CO3)2(OH)2 (1)
AUTUNITA Ca(UO2)2(PO4)2·10-12H2O (2)
BAYLEYITA Mg2(UO2)(CO3)3)(H2O)12·6H2O (7)
BARITINA BaSO4 (5)
BILLIETITA Ba(UO2)6O4(OH)6·8H2O (7)
BISMUTO Bi (5)
BORNITA Cu5FeS4 (1)
BROCHANTITA Cu2+4(SO4)(OH)6 (5)
CALCITA CaCO3 (2)
CALCOCITA Cu2S (1)
CALCOPIRITA CuFeS2 (1)
CARNOTITA K2(UO2)2(VO4)2·3H2O (1)
CECHITA PbFe2+VO4(OH) (8)
ČEJKAITA Na4(UO2)(CO3)3 (7)
COFFINITA USiO4·nH2O (5)
COMPREIGNACITA K2(UO2)6O4(OH)6·7H2O (7)
COVELLITA CuS (1)
CUARZO SiO2 (2)
CUPROSKLODOWSKITA Cu(UO2)2Si2O7·6H2O (7)
DEMÉSMAEKERITA Pb2Cu2+5(UO2)2(Se4+O3)6(OH)6·2H2O (5)
DOLOMITA CaMg(CO3)2 (2)
ERITRITA Co3(AsO4)2·8H2O (2)
FRANCEVILLITA Ba(UO2)2V2O8·5H2O (7)
GALENA PbS (5)
GERSDORFFITA (NiCo)AsS (5)
GOETHITA α-Fe3+O(OH) (2)
HEINRICHITA Ba(UO2)2(AsO4)2·10-12H2O (7)
HEMATITES α-Fe2O3 (2)
JOHANNITA Cu(UO2)2(SO4)2(OH)2·8H2O (6)
KTENASITA ? (Cu,Zn)5(SO4)2(OH)6·6H2O (8)
LANGITA Cu2+4(SO4)(OH)6·2H2O (7)
LIEBIGITA Ca2(UO2)(CO3)3·11H2O (7)
MALAQUITA Cu2+2(CO3)(OH)2 (1)
METATORBERNITA Cu2+(UO2)2(PO4)2·8H2O (5)
NATROURANOSPINITA (Na2,Ca)(UO2)2(AsO4)2·5H2O (7)
NATROZIPPEITA Na5(H2O)12[(UO2)8(SO4)4O5(OH)3] (7)
OLIVENITA Cu2+2(AsO4)(OH) (7)
OPALO SiO2·nH2O (7)
PIROLUSITA Mn4+O2 (2)
POSNJAKITA Cu2+4(SO4)(OH)6·H2O (6)
PIRITA FeS2 (1)
RAMSBECKITA ? (Cu2+,Zn)15(SO4)4(OH)22·6H2O (7)
ROSCOELITA KV2AlSi3O10(OH)2 (5)
SENGIERITA Cu2(UO2)2(VO4)2(OH)2·6H2O (1)
SIDERITA Fe2+CO3 (2)
SIEGNITA (Sic) (Citada por el Dr. Mata, suponemos que quiere referirse a la Siegenita CoNi2S4. Dada la gran cantidad de arsénico en el yacimiento nos inclinamos a pensar que puede tratarse de GERSDORFFITA) (2)
TENORITA Cu2+O (2)
TORBERNITA Cu2+(UO2)2(PO4)2·8-12H2O (2)
TRÖGERITA (H3O)[(UO2)(AsO4)](H2O)3 (7)
TYUYAMUNITA Ca(UO2)2V2O8·5–8H2O (1)
URANINITA UO2 (1)
URANOFANA-ALFA Ca(UO2)2[SiO3(OH)]2·5H2O (7)
VANDENDRIESSCHEITA Pb1.5(UO2)10O6(OH)11·11H2O (7)
VOLBORTHITA Cu2+3V5+2O7(OH)2·2H2O (6)
ZEUNERITA Cu2+(UO2)2(AsO4)2·10–16H2O (1)
WEEKSITA (K,Ba)1-2(UO2)2(Si5O13)·H2O (8)
CUPROSKLODOWSKITA Cu(UO2)2Si2O7·6H2O (7)
DEMÉSMAEKERITA Pb2Cu2+5(UO2)2(Se4+O3)6(OH)6·2H2O (5)
DOLOMITA CaMg(CO3)2 (2)
ERITRITA Co3(AsO4)2·8H2O (2)
FRANCEVILLITA Ba(UO2)2V2O8·5H2O (7)
GALENA PbS (5)
GERSDORFFITA (NiCo)AsS (5)
GOETHITA α-Fe3+O(OH) (2)
HEINRICHITA Ba(UO2)2(AsO4)2·10-12H2O (7)
HEMATITES α-Fe2O3 (2)
JOHANNITA Cu(UO2)2(SO4)2(OH)2·8H2O (6)
KTENASITA ? (Cu,Zn)5(SO4)2(OH)6·6H2O (8)
LANGITA Cu2+4(SO4)(OH)6·2H2O (7)
LIEBIGITA Ca2(UO2)(CO3)3·11H2O (7)
MALAQUITA Cu2+2(CO3)(OH)2 (1)
METATORBERNITA Cu2+(UO2)2(PO4)2·8H2O (5)
NATROURANOSPINITA (Na2,Ca)(UO2)2(AsO4)2·5H2O (7)
NATROZIPPEITA Na5(H2O)12[(UO2)8(SO4)4O5(OH)3] (7)
OLIVENITA Cu2+2(AsO4)(OH) (7)
OPALO SiO2·nH2O (7)
PIROLUSITA Mn4+O2 (2)
POSNJAKITA Cu2+4(SO4)(OH)6·H2O (6)
PIRITA FeS2 (1)
RAMSBECKITA ? (Cu2+,Zn)15(SO4)4(OH)22·6H2O (7)
ROSCOELITA KV2AlSi3O10(OH)2 (5)
SENGIERITA Cu2(UO2)2(VO4)2(OH)2·6H2O (1)
SIDERITA Fe2+CO3 (2)
SIEGNITA (Sic) (Citada por el Dr. Mata, suponemos que quiere referirse a la Siegenita CoNi2S4. Dada la gran cantidad de arsénico en el yacimiento nos inclinamos a pensar que puede tratarse de GERSDORFFITA) (2)
TENORITA Cu2+O (2)
TORBERNITA Cu2+(UO2)2(PO4)2·8-12H2O (2)
TRÖGERITA (H3O)[(UO2)(AsO4)](H2O)3 (7)
TYUYAMUNITA Ca(UO2)2V2O8·5–8H2O (1)
URANINITA UO2 (1)
URANOFANA-ALFA Ca(UO2)2[SiO3(OH)]2·5H2O (7)
VANDENDRIESSCHEITA Pb1.5(UO2)10O6(OH)11·11H2O (7)
VOLBORTHITA Cu2+3V5+2O7(OH)2·2H2O (6)
ZEUNERITA Cu2+(UO2)2(AsO4)2·10–16H2O (1)
WEEKSITA (K,Ba)1-2(UO2)2(Si5O13)·H2O (8)
Cualquier persona puede hacer uso de la información contenida en esta entrada, tan solo rogamos citen la bibliografía 7) que consta en las referencias. Muchas gracias.
.
Sabadell, a dieciocho de noviembre de 2009.
1 comentario:
Enhorabona! Una pàgina espectacular. Curiosament l'he trobada buscant informació sobre els minerals radiactius de la Plana de Mont-ros ja que l'espectre gamma d'aquests minerals (en vaig recollir fa més de 30 anys) és molt diferent d'autunites i torbernites d'altres llocs.
Adolf Cortel
Publicar un comentario